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Chronic use of benzodiazepines for the treatment of anxiety

has revealed that these drugs can lead to dependence as

indicated by withdrawal symptoms following cessation and

tolerance to the drugs effects. Together with their reinforcing

properties, this has led to them being labelled as scheduled

drugs. Our new knowledge regarding the molecular structure of

the benzodiazepine binding site and the growing ability to

differentiate GABAA receptor subtypes, either by genetic

manipulation or subtype selective compounds, have begun

to facilitate our understanding of what underlies the

mechanism of benzodiazepine dependence. In addition, the

involvement of GABAA receptors in this phenomenon is

leading to a greater understanding of other drugs such as

alcohol and opiates.
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Introduction
Benzodiazepines have been prescribed by doctors since

chlordiazepoxide (Librium) was first introduced in 1960.

They are extremely effective anxiolytic agents as well as

being useful for many other indications, including insom-

nia, convulsive disorders, muscle relaxation and sedation.

Following Librium, many related compounds with vary-

ing potency and pharmacokinetic properties were devel-

oped and, because of their safety and efficacy,

benzodiazepines became the most prescribed drugs in

the 1960s and 1970s. However, it became apparent that

there were several side effects that resulted from use of

these drugs. The immediate drowsiness and confusion
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were clearly a problem for patients required to perform

highly attentive tasks such as driving; however, it became

obvious that a more serious problem occurred following

long-term treatment, whereby patients could become

both physically and psychologically dependent upon

benzodiazepines, experiencing acute withdrawal phe-

nomena after abrupt cessation of treatment. Benzodiaze-

pines have also been classified as drugs of abuse, yet this is

rarely in isolation, and 80% of benzodiazepine abuse is in

conjunction with other abused drugs such as opiates and

alcohol [1]. As a consequence, the use of benzodiazepines

has fallen in recent years; however, they are still highly

prescribed drugs and more stringent guidelines have been

put in place so that they are generally prescribed for no

longer than a one-month period. Clearly, a replacement

compound that was as effective as a benzodiazepine but

lacked these side effects would be in great demand, and

pharmaceutical companies have long sought to find a way

of tackling this problem. Initially, it was thought that a

partial agonist would retain the anxiolytic efficacy of full

benzodiazepine agonists but lack many of the side effects.

Several compounds were generated to test this hypoth-

esis, such as bretazenil and FG8205; however, these

potential drugs were never developed owing to the per-

sistence of the associated liabilities such as sedation.

Benzodiazepines act by enhancing the effect of the

inhibitory neurotransmitter g-aminobutyric acid (GABA).

Furthermore, they bind directly to a site on the receptor,

altering the functional response upon receptor activation

by GABA. In 1987 the first GABAA receptor subunit was

isolated and sequenced and shown to be part of a super-

family of ligand-gated ion channels including nicotinic

acetycholine receptors and glycine receptors [2]. This

family has become characteristically known as the ‘cys-

loop’ family because of the presence of a cysteine loop in

their N-terminal domain. All of these receptors exist as

pentamers arranged around a central ion channel. Just like

the cascade of benzodiazepines that followed chlordia-

zepoxide, more homologous sequences that could be

classified as GABAA receptor subunits were isolated, until

it became clear that this receptor was not a single entity

but made up of many different subtypes, differing in the

make-up of their constituent five subunits [3]. To date, 19

different subunits have been isolated not including alter-

natively spliced variants, which add further diversity. The

five subunits are arranged to form a channel that is

selectively permeable to chloride ions; GABA binds

extracellularly to increase the probability of the channel

opening. The flow of chloride ions hyperpolarizes the

cell, decreasing the likelihood of the neuron firing an
Current Opinion in Pharmacology 2005, 5:47–52
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Pie chart illustrating the approximate abundance of different GABAA

receptor subtypes in the mammalian brain. Subscript x is indicated

where the particular subunit is not known. Reproduced with

permission from [49].
action potential. The pentamer comprises of two a sub-

units, two b subunits and an additional subunit, most

commonly g2, which confers a key part of the required

binding site for benzodiazepines. Subunits that have been

isolated to date comprise a1–a6, b1–b3, g1–g3, d, e, u, p

and r1–3. Clearly from this number, the wealth of pos-

sible receptor subtypes is enormous; however, only a

limited number have been shown to exist in reality.

The most abundant combinations were demonstrated

using immunolabelling and autoradiography, and are

illustrated in Figure 1 [4]. These receptor subtypes have

discrete distributions in the brain, suggesting that they

fulfil different functional roles [5]. Pharmacological

experiments on recombinant receptors have also revealed

that these subtypes show distinct characteristics based on

their responses to various ligands [6]. Those receptors

containing a g2 subunit possess a binding site for benzo-

diazepines, but those also containing an a4 or a6 subunit

are not sensitive to the majority of clinically prescribed

benzodiazepine agonists. The discovery that a family of

GABAA receptors existed with distinct functional roles

provided the opportunity to revisit the benzodiazepine

dilemma, as it became clear that it might be possible to

separate the beneficial anxiolytic effects from the side

effects through pharmacological isolation of subtypes.

Recent advances of our understanding of the structure

of the benzodiazepine binding site and the ability to

make either subunit knockout mice or mice expressing

targeted mutations has created a superb opportunity to

further investigate the roles played by receptor subtypes

in the efficacy and side effects of benzodiazepine treat-

ment [7,8]. Although in their early stages, these techni-

ques are beginning to reveal valuable information on the
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mechanisms and receptor subtypes involved not only in

benzodiazepine addiction but also in other forms of drug

dependency.

GABAA receptor structure
As dependency and withdrawal phenomena are depen-

dent upon chronic occupation of the benzodiazepine

binding site, the understanding of this domain of the

receptor is an important first step towards understanding

the underlying mechanisms. As mentioned previously,

the benzodiazepine binding site is located in the extra-

cellular N-terminal portion of the receptor. Both the a

subunit and the g subunit contribute to the binding site

and mutagenesis studies have implicated several residues

or groups of residues in contributing to this binding

pocket. A recent description of the structure of a mol-

luscan acetylcholine binding protein has greatly facili-

tated our understanding of the structure of the

extracellular region of the GABAA receptor, as the seq-

uence of the molluscan protein closely matches the

N-terminal region of all ‘cys-loop’ channels [9]. By over-

laying the a and g subunits onto the molecular model of

the acetylcholine binding protein, the structure of the

regions involved in the benzodiazepine binding site have

been modelled, with previously identified amino acids

clustering together to form a putative binding pocket

(Figure 2) [10]. Several crucial amino acids are involved

in benzodiazepine binding or function: a1His101,

a1Tyr159, a1Gly200, a1Thr206 and a1Tyr209 in the

a subunit, and g2Phe77, g2Ala79, g2Thr81 and

g2Met130 in the g2 subunit. In addition to site-directed

mutagenesis, a technique known as ‘substituted cysteine

scanning’ has been used to investigate these amino acids,

whereby the residues of interest are mutated to cysteine

that can then be covalently labelled by cysteine-reactive

compounds such as methanethiosulfonate. Binding of a

benzodiazepine will prevent the cysteine labeling, sug-

gesting that the residue forms part of the binding site

[11��,12]. In the a subunit, the His101 (or equivalent) is a

key binding residue, with g2Phe77 also being a major

residue [13,14]. The two GABA binding sites per receptor

are located in a homologous position to the benzodiaze-

pine site between the a and b subunits. The mechanism

of the ligand-binding to channel-opening process is still

unclear; however, benzodiazepine agonist binding has no

direct functional effect but, in the presence of GABA,

increases the frequency of channel opening producing a

net increase in current flow. Recent studies have provided

clues as to what might be happening to the channel under

these circumstances [15��] and molecular modelling

should assist in developing our understanding of the

process of ligand binding, channel opening and desensi-

tization. Clearly, the diversity of receptor subtypes and

their associated pharmacology complicate the search for

the mechanism of dependence, but suggest that not all

GABA receptors are involved.
www.sciencedirect.com
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Model of the extracellular domain of an a1 and g2 subunit of the GABAA receptor based on the nicotinic acetylcholine binding protein.

The model shows diazepam located in the binding site and highlights the position of His101 in a1 and Phe77 in the g2 subunit.
GABAA receptors and dependence
Tolerance at the receptor level

It is well established that following chronic exposure to

benzodiazepines and alcohol there are alterations in

GABAergic neurotransmission. These alterations contri-

bute to the symptoms of tolerance, dependence and

withdrawal. The nature and mechanism of these changes

are not clear; however, they are closely linked to the dose

of benzodiazepine and the duration of use [16,17]. This

area of the literature is dogged by a great deal of varia-

bility, but there are some findings that are reasonably

consistent. Firstly, there appears to be a reduction in the

potentiation of GABA responses by acute application of

benzodiazepines following chronic benzodiazepine expo-

sure, so that chronically treated receptors become less

sensitive to an acute challenge. This effect is intrinsic to

the receptor itself, as a cell line expressing one recombi-

nant subtype (i.e. a1b2g2) undergoes the same process

[18,19]. The turnover of receptors is important in this

process, as the effect is blocked by cyclohexamide

[20].

Changes in GABAA subtype expression

It has also been observed that chronic benzodiazepine

treatment produces alterations in the expression of indi-

vidual subtypes. The evidence is somewhat confusing,

with some reports describing upregulation of particular

subunits [20], whereas others see either no effect [21,22]

or downregulation [23]. It is likely that these changes are

local to specific brain regions. In addition, the extent of
www.sciencedirect.com
changes in mRNA is often relatively small and might not

reflect equivalent protein changes. A study investigating

receptor protein levels demonstrated a decrease in a1 and

upregulation of a3, a5, b2/3 and g2 subunits following

two weeks of exposure to diazepam [24]. In terms of the

functional effects of chronic treatment, reduced minia-

ture inhibitory synaptic current amplitude was reported

recently in the hippocampus; this was associated with a

decrease in a1 subunit mRNA and decreased protein

kinase A activity [25]. A recent study used 2-deoxyglu-

cose quantitative autoradiography to monitor changes in

activity following diazepam treatment. They observed a

reduced level of glucose utilisation on acute diazepam

exposure, which tolerated over a 28-day period of daily

treatment [22]. This study demonstrated short-term tol-

erance after three days in brain regions associated with

sensory processing but a longer term effect in the Papez

circuit, nucleus accumbens and basolateral amygdala,

which are all involved in emotional processing, suggesting

that these changes might more closely follow the devel-

opment of dependence. Changes in these regions were

also observed on withdrawal, implicating a common cir-

cuitry in the withdrawal process.

Involvement of GABAA receptors in other forms of

dependence

The changes observed after chronic benzodiazepine

treatment mimic, at least in part, those following chronic

alcohol exposure and, as ethanol produces similar depen-

dence and withdrawal properties and acts at least in part
Current Opinion in Pharmacology 2005, 5:47–52
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through GABAA receptors, these studies might reveal

common mechanisms. As with benzodiazepines, GABA

subunit expression is altered following chronic ethanol

administration. The a1 subunit is reduced and a4

increased in specific regions [26,27], and this is reflected

in the pharmacology of hippocampal GABAergic function

where miniature inhibitory synaptic currents become less

sensitive to benzodiazepine potentiation [28]. Biochem-

ical studies using coimmunoprecipitation of cortical

GABAA receptors with clathrin and adaptin-a reported

an increase in the proportion of a1 subunit protein in the

cytosol, suggesting that a1 subunit endocytosis is

enhanced [29��]. In that study, a4 peptide was also

upregulated but there was no change in its cytosolic

fraction. In addition, genetic analysis studies reveal that

GABAergic genes are probably linked to alcohol depen-

dence and withdrawal in mice [30] and, recently, the a2

and g3 subunits have been associated with alcohol depen-

dence in humans [31,32]. More details on alcohol depen-

dence and human genetic studies can be found in the

reviews by Wonnacott, Sidhpura and Balfour, and Mayer

and Höllt (this issue). We do not yet understand the

mechanisms that underlie these associations; however,

it appears that GABA receptors may play a role in deter-

mining addictive behaviour itself. Laviolette et al. [33��]
demonstrated that GABAA receptors in the ventral teg-

mental area serve as a switching mechanism in the

dopamine reward pathway. Following opiate depen-

dence, these receptors switch from inhibitory to excita-

tory signalling [33��]; however, the subtypes involved

remain unexplored. Using congenic mouse strains, the

first gene to be linked to alcohol and barbiturate (another

GABAA receptor modulator) dependence and withdrawal

has recently been identified. Mpdz, which is believed to

regulate protein targeting and stabilization in mem-

branes, has been linked with 5-hydroxytryptamine

5HT2 and GABAB receptors, and its expression genetic-

ally correlates with withdrawal severity [34��].

In addition to changes in GABAergic neurotransmission

in benzodiazepine-dependent animals, there are also

reports of modifications in excitatory transmission. N-

methyl-D-aspartate receptor (NMDA) antagonists have

been shown to prevent the development of sedative

tolerance [35]. Increases in a-amino-3-hydroxy-5-

methyl-4-isoxazole propionate (AMPA) and NMDA

receptor expression also occur upon withdrawal from

diazepam [36,37]. A recent study has shown that this

upregulation is a result of increased expression of the

NR1 and NR2B NMDA receptor subunits (in this case, in

the hippocampus) and that MK801 administration was

able to block this upregulation [38]. Clearly, these are

downstream adaptations in response to overstimulation of

GABAA receptors that could underlie, at least in part,

some of the dependence properties. They are almost

certainly involved in the withdrawal responses observed

following cessation of chronic treatment.
Current Opinion in Pharmacology 2005, 5:47–52
GABA knockout and mutant mice
The ability to explore the mechanisms underlying depen-

dence has recently been facilitated by the generation of

GABAA subunit knockout mice [39,40] and point mutant

mice rendering a single subtype insensitive to benzodia-

zepines [7,41]. Chronic studies have not yet been per-

formed using any of the subunit knockout mice, as the

compensatory changes from other subunits make inter-

preting the data difficult. The generation of mice contain-

ing a mutated histidine residue in the a1 subunit (as

described earlier), which renders the GABAA receptor

insensitive to diazepam, offers a much more useful tool to

investigate the mechanism of tolerance and dependence.

The utility of these mice was first shown using the

a1His101Arg mouse in which a1-containing receptors

are diazepam insensitive. Wild-type and mutant animals

were acutely treated with diazepam and 16 h later brain

RNA was prepared for a microarray study to identify those

genes regulated by diazepam in wild-type but not mutant

animals [42��]. Several genes including those encoding

calcium/calmodulin-dependent kinase II, brain-derived

neurotrophic factor and mitogen-activated protein kinase

were found to be downregulated only in association with

a1. These types of study could potentially reveal a lot of

information on gene regulation following chronic admin-

istration and more details on gene array experiments are

discussed in the review by Rhodes and Crabbe (this

issue). A study utilizing a1H101Arg, a2H101Arg,

a3H126Arg and a5H105Arg has recently shown that

the development of tolerance to the sedative properties

of diazepam involves both a1 and a5 subunits. Because

a1 animals were not sedated acutely, they did not develop

tolerance. The a5H105Arg mice, despite being acutely

sedated, also showed no tolerance. Wild-type mice exhib-

ited reduced a5-associated binding in the hippocampus

following chronic treatment [43��]. This finding supports

that of a previous study showing downregulation of the a5

subunit [23], and the association of dependence with the

a5 subunit reflects previous findings with the subunit-

selective hypnotic zolpidem. Zolpidem does not bind to

the a5-containing GABAA receptor and is reported to

show less dependence liability than do non-selective

benzodiazepines [44,45]; however, this has recently been

questioned by baboon studies in which zolpidem was

highly reinforcing [46]. Recent progress towards the

development of subtype-selective agents has also been

made with the discovery of benzodiazepine site agonists

that selectively potentiate a3- and a2-containing recep-

tors [47��,48]. These compounds lack the sedative profile

of either non-selective or a1-selective agonists, but

effects on dependence and withdrawal have not yet been

published.

Conclusions
Despite significant literature on benzodiazepine depen-

dence, including tolerance and withdrawal, we are still far

from understanding what mechanisms underlie these
www.sciencedirect.com
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effects. The downstream consequences of long-term

benzodiazepine occupancy of GABAA receptors can

now be investigated in more detail using subtype-insen-

sitive mice, and future work with these animals promises

to reveal further insight. Large-scale microarray studies

should also shed light on the gene regulation that is

clearly involved in the adaptation process, and hopefully

will facilitate the identification of the chain of events that

lead to benzodiazepine dependence. The recent identi-

fication of subtype-selective compounds will also aid in

identifying the types of GABAA receptor that mediate

these phenomena.
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